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Migraine remains an elusive and poorly understood disease. The uncertainty is reflected by the currently unsatisfactory acute
and prophylactic treatments for this disease. Genetic and pharmacological information points to the involvement of some
transient receptor potential (TRP) channels in pain mechanisms. In particular, the TRP vanilloid 1 (TRPV1) and TRP ankyrin 1
(TRPA1) channels seem to play a major role in different models of pain diseases. Recent findings have underscored the
possibility that TRP channels expressed in the nerve terminals of peptidergic nociceptors contribute to the migraine
mechanism. Among this channel subset, TRPA1, a sensor of oxidative, nitrative and electrophilic stress, is activated by an
unprecedented series of irritant and pain-provoking exogenous and endogenous agents, which release the pro-migraine
peptide, calcitonin gene-related peptide, through this neuronal pathway. Some of the recently identified TRPA1 activators
have long been known as migraine triggers. Furthermore, specific analgesic and antimigraine medicines have been shown to
inhibit or desensitize TRPA1 channels. Thus, TRPA1 is emerging as a major contributing pathway in migraine and as a novel
target for the development of drugs for pain and migraine treatment.
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Calcitonin gene-related peptide
(CGRP) and migraine

Migraine
Migraine is a common and disabling neurovascular disorder,
with heritability estimates as high as 50% and with a
likely polygenic multifactorial inheritance (Pietrobon and
Moskowitz, 2013). Migraine is characterized by attacks of
often throbbing and frequently unilateral severe headache,
which are usually associated with nausea, vomiting, and/or

sensitivity to light (photophobia), sound (phonophobia), or
odours (osmophobia), and aggravated by movement. If
untreated, attacks typically last 4–72 h. In about 30% of
patients, migraine attacks are preceded or accompanied by
transient focal neurologic symptoms, which are usually
visual, but that could also consist in paresthesias or language
disturbances, commonly known as ‘aura’. The last update of
the World Health Organization, Global Burden of Disease,
states that migraine alone is responsible for almost 3% of
disability attributable to a specific disease worldwide. In par-
ticular, migraine ranks first among neurological disorders,

BJP British Journal of
Pharmacology

DOI:10.1111/bph.12512
www.brjpharmacol.org

2552 British Journal of Pharmacology (2014) 171 2552–2567 © 2013 The British Pharmacological Society

mailto:geppetti@unifi.it
http://dx.doi.org/10.1111/bph.2014.171.issue-10


seventh among non-communicable diseases and eighth
among most burdensome diseases (Murray and Lopez, 2013).
The one-year prevalence of migraine registered in the United
States and Western Europe is 11% overall: 6% among men
and 15–18% among women (Rasmussen and Olesen, 1992;
Stewart et al., 1992). Chronic migraine, which is diagnosed
when patients present 15 headache attacks or more per
month over at least 3 consecutive months, affects about 1–2%
of the general population (Lipton, 2011). After migraine has
been diagnosed, its pharmacological treatment can either be
abortive or prophylactic. Poor understanding of the mecha-
nisms underlying migraine contributes to the current
unsatisfactory prophylactic pharmacological treatment of
migraine and particularly of chronic migraine. There are
other rarer forms of primary headaches, primarily represented
by cluster headache, which shows some similarities with
migraine in terms of mechanisms and treatments.

Neurogenic inflammation
A subset of nociceptors is characterized by the ability of
producing and releasing from their central and peripheral
terminals the tachykinins, substance P (SP) and neurokinin A
(NKA) and CGRP. Current neurochemical and functional
identification of the subset of peptidergic somatosensory
neurons has strengthened the seminal proposals of neuro-
genic vasodilatation by William Bayliss (1901) and of the
‘nocifensor system’ by Sir Thomas Lewis (Lewis, 1937).
Indeed, some nerve endings of the C- and Aδ type of a
subpopulation of nociceptors, when activated by noxious
stimuli, orchestrate, via antidromic invasion of collateral
fibres by propagated action potentials, an almost instantane-
ous defensive response, which encompasses a rapidly devel-
oping vasodilatation and plasma protein extravasation, all
phenomena mediated by SP/NKA or CGRP liberated from
their peripheral (perivascular) terminals. In experimental
animals, and particularly in rodents, there is overwhelming
evidence that plasma extravasation is mediated by SP or
NKA which, by activating neurokinin-1 (NK1) receptors in
endothelial cells of postcapillary venules, promotes the
opening of gaps and the leakage of plasma proteins from the
lumen to the interstitial space (Geppetti and Holzer, 1996;
receptor nomenclature follows Alexander et al., 2013). In
contrast, arteriolar vasodilatation, which is responsible for
the neurogenic hyperaemic response, is mediated exclusively
by the release of CGRP (Brain and Grant, 2004).

In the past, tachykinin release from perivascular nerve
endings of trigeminal nociceptors and the ensuing meningeal
plasma protein extravasation had been proposed as the
underlying mechanism of migraine (Moskowitz et al., 1979).
However, failure of NK1 receptor antagonists to ameliorate
the headache and associated symptoms of migraine
(Goldstein et al., 1997) definitively excluded any contribu-
tion of tachykinins, NK1 receptors and the plasma protein
extravasation component of neurogenic inflammation to the
disease. These negative clinical findings have underscored
the difference between rodents and humans regarding the
relative contribution of specific neurogenic inflammatory
responses in the different species, and now the hypothesis
that neurogenic inflammation contributes to migraine head-
aches has apparently been discarded.

CGRP and its distribution and function
However, basic and clinical investigation on CGRP has reju-
venated the seminal idea that neurogenic responses initiated
by stimulation of trigeminal sensory nerve endings in cranial
vessels are a major determinant of migraine pathogenesis
(Moskowitz et al., 1979). CGRP, whose existence was pre-
dicted on the basis of the alternative splicing of the calcitonin
gene (Amara et al., 1985), is, on a molar basis, one of the most
powerful vasodilators known (Brain and Grant, 2004). Of the
two forms of the peptide identified in humans, α-CGRP is
mainly expressed in primary sensory neurons, while β-CGRP
is primarily found in intrinsic enteric neurons (Brain and
Grant, 2004). The α-CGRP isoform is a 37-amino acid peptide
markedly expressed in sensory neurons of the dorsal root
ganglia (DRG), trigeminal ganglia (TG) and vagal ganglia
(VG; Amara et al., 1985; Brain and Grant, 2004). The mature
peptide, CGRP, is then transported to the very terminal
region of central and peripheral nerve endings, where it is
stored in dense core vesicles to be secreted either in the dorsal
spinal cord or in a variety of peripheral tissues, particularly
around blood vessels (Geppetti and Holzer, 1996). Approxi-
mately 40–50% of TG neurons are CGRP-positive (Tajti et al.,
1999b; Eftekhari et al., 2010) and a dense network of CGRP-
positive nociceptors is present in rodent and human menin-
geal vessels (Tsai et al., 1988; Edvinsson et al., 1998b). CGRP is
also expressed in specific areas of the CNS, including the
hypothalamus, thalamus, periaqueductal gray, superior and
inferior colliculi, amygdala, trigeminocervical complex
(TCC), and the cerebellum (Hokfelt et al., 1992; van Rossum
et al., 1997). Some of these brain areas may be relevant in
migraine pathophysiology, as indicated by the ability of
CGRP to alter synaptic and neuronal activity at the TCC and
transmission of nociceptive signals to the thalamus and cor-
tical regions (Storer et al., 2004; Goadsby, 2007). More recent
findings have shown that CGRP receptor antagonists inhibit
cortical spreading depression in a rat model (Tozzi et al.,
2012). However, the precise role of CGRP in these central
structures and the contribution of such effects to the
migraine mechanism remain uncertain.

CGRP receptors
The functional CGRP receptor consists of a triad of proteins,
comprising a classical GPCR, the calcitonin receptor-like
receptor (CLR; Aiyar et al., 1996), a single transmembrane
spanning protein called receptor activity-modifying protein 1
(RAMP1; McLatchie et al., 1998), required for the binding of
CGRP to CLR and the receptor component protein (Ma et al.,
2003) that characterizes the G-protein associated with the
receptor. Components of the CGRP receptor complex are
expressed in peripheral and central structures (Eftekhari and
Edvinsson, 2010), such as cell bodies in TG, periaqueductal
grey, and in the trigeminal nucleus caudalis (Oliver et al.,
2002; Lennerz et al., 2008). However, it has not been convinc-
ingly established whether all these components assemble in a
fully functional receptor at these anatomical sites. However,
there is no doubt that vascular smooth muscle cells in arteries
and arterioles, including those of the cranial circulation,
express the entire and functional CGRP-receptor complex, as
indicated by the robust vasodilatatory effect of CGRP(medi-
ated by activation of adenylyl cyclase) in these vessels either
in vitro and in vivo (Brain and Grant, 2004).
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CGRP and migraine
While the anatomical site from which migraine attack origi-
nates and the initiating mechanism is still a mystery, the key
role of CGRP in the migraine pathway is supported by a series
of robust findings. After the in vivo preclinical observation
that TG activation results in CGRP and SP release (Goadsby
et al., 1988), the first indirect evidence suggesting a role of
CGRP in migraine was obtained about 20 years ago, when it
was shown that, during spontaneous migraine attacks, CGRP
levels were elevated in samples of cranial venous blood
(Goadsby et al., 1990). Increased CGRP levels have also been
found in saliva during an acute migraine attack (Cady et al.,
2009) or in cranial blood during nitroglycerine-evoked cluster
headache attacks (Fanciullacci et al., 1995). Interestingly, suc-
cessful treatment with antimigraine compounds, such as the
triptans, is accompanied by a decrease in CGRP levels during
migraine or cluster headache attacks (Fanciullacci et al., 1995;
Goadsby and Hargreaves, 2000). It should be noted that
others have failed to detect increased CGRP levels in cranial
blood of migraineurs (Tvedskov et al., 2005). Another key
observation, derived from a series of highly informative
provocation experiments, showed that intravenous injection
of CGRP induces migraine-like attacks in migraineurs (Lassen
et al., 2002).

Conclusive evidence that CGRP plays a major role in
migraine originated, however, from clinical trials that used
various and chemically unrelated CGRP receptor antagonists,
namely olcegepant (BIBN4096BS), telcagepant (MK-0974),
MK-3207 and BI 44370 TA. Intravenous administration of
2.5 mg of olcegepant produced a response 2 h after treatment
in 66% of treated patients, compared with a response rate of
27% observed in the placebo group (Olesen et al., 2004), a
clinical response similar to that observed for triptans (Ferrari
et al., 2002). This study made two important points; firstly it
showed that blockade of CGRP receptors could be a valuable
alternative mechanism for migraine treatment and secondly
it provided the first clinical evidence of the involvement of
CGRP in the mechanism(s) for migraine. The absence of direct
vasoconstrictor activity and cardiovascular effects opened a
novel scenario for and gave real hope of, CGRP receptor
antagonists as an effective and well-tolerated migraine treat-
ment (Petersen et al., 2005). Telcagepant was the first orally
bioavailable CGRP receptor antagonist and, up to date, the
most investigated compound of this new class of drugs. It
showed efficacy in pain relief of migraine headache in phase II
and III clinical trials (Ho et al., 2008a,b; Connor et al., 2009).
Unfortunately, telcagepant increased plasma levels of liver
transaminases in a few patients of a cohort of patients treated
with the drug twice a day for 3 months (Han et al., 2010;
Connor et al., 2011), and in patients affected by menstrual
migraine enrolled in a short-term clinical study (Bigal et al.,
2013). More recently, MK-3207, a new orally active CGRP
receptor antagonist, demonstrated its superiority in compari-
son with placebo for migraine attack treatment (Hewitt et al.,
2011). However, as for MK0974 (Merck & Co., 21 April 2009),
MK3207 development was stopped due to the asymptomatic
liver toxicity detected in some of the enrolled patients
(Edvinsson and Linde, 2010). The development of both the
oral CGRP antagonist, BI 44370 TA, which has been found
superior to placebo end equieffective to eletriptan (Diener

et al., 2011), and the orally bioavailable antagonist, BMS-
927711 (Luo et al., 2012) has been stopped (Dolgin, 2013).

Studies with promising monoclonal antibodies (mAbs)
against CGRP are ongoing (Bigal et al., 2013). At the time of
this review, 4 mAbs are in clinical development for the treat-
ment of migraine. Two of these mAbs, namely LY2951742
from Eli Lilly–Arteaus Therapeutics (Lilly Corporate Center,
Indianapolis, IN, USA; Arteaus Therapeutics, Cambridge, MA,
USA) and ALD403 from Alder Therapeutics (Alder Biophar-
maceuticals, Inc., North Creek Parkway South Bothell, WA,
USA), directly bind and neutralize CGRP. A third mAb, AMG
334 from Amgen Inc. (One Amgen Center Drive, Thousand
Oaks, CA, USA), targets the CGRP receptor, while LBR-101
from Labrys Biologics–Pfizer (Labrys Biologics, Inc., San
Mateo, CA, USA; Pfizer, New York, NY, USA) prevents the
binding of CGRP to its receptor. Results of the early-phase
clinical trials are not publicly available for any of these mAbs
yet. According to data collected in preclinical studies, CGRP
receptors are expressed on may different levels in the trigemi-
nal vascular system of the cynomolgus monkey, such as the
meningeal vasculature innervated by CGRP-positive nerve
fibres, neurons and satellite cells in the trigeminal ganglion,
and in the spinal trigeminal nucleus (Liu et al., 2011). Hence,
in principle, mAbs targeting the CGRP system could exert
their action at both the vascular and neuronal levels. Also,
in the presence of a normal, un-compromised blood–brain
barrier (BBB), about 0.1% of circulating IgG can enter the
CNS, presumably through the circumventricular organs (Gu
and Sigurdsson, 2011). Thus, even though mAbs could reach
their target and prevent the interaction with the peptide and
its receptors at central neuronal sites, it should be emphasized
that the proportion of CGRP and /or CGRP receptors targeted
by the minimal amount of mAbs that may cross the BBB is
most likely negligible. Thus, blockade of the CGRP action at
the perivascular level in intra- and extra-cranial vessels
should currently remain the simplest and first explanation
for any possible beneficial action of mAbs in migraine.

Despite the adverse reactions in the liver, which have not
yet been conclusively ascribed to a class effect, the structural
complexity of the CGRP receptor, which has represented the
key hurdle for the development of small molecule antago-
nists (Moore and Salvatore, 2012), and the possible interac-
tion of CGRP with different receptors (Walker and Hay, 2013),
clinical data unequivocally demonstrate that, whatever the
initiating mechanism(s) of the attacks, CGRP release and
CGRP-receptor activation are major contributing mecha-
nisms in migraine (Olesen et al., 2004; Ho et al., 2008a;
Diener et al., 2011). Thus, identification of exogenous and
endogenous stimuli that result in CGRP release from trigemi-
nal neurons may be of paramount importance in decoding
the molecular pathways that eventually cause or combine to
worsen the headache and associated symptoms of migraine.

In the second part of this review, we first briefly present
the transient receptor potential (TRP) channels and, in par-
ticular, those expressed by peptidergic primary sensory
neurons, whose activation eventually results in neuropeptide
release. We then summarize current knowledge regarding the
role of one of these channels, the TRP ankyrin 1 (TRPA1), as
a sensor of oxidative, nitrative and electrophilic stress and
as a major player in various pain conditions, including
migraine (see Table 1).
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TRP channels

The TRP channel superfamily
From the original finding that vision in Drosophila melan-
ogaster is produced by a mechanism that consists in an
initial activation of a transient inward current associated
with receptor stimulation (Minke, 1977; Montell, 1999), the
identification of the larger family of the TRP channels has
proceeded with an unprecedented pace. Currently, more
than 50 members of the TRP family have been characterized
(Nilius et al., 2007). Despite the wide heterogeneity of this
family of ion channels, TRPs share a general role serving
sensory transduction, because they contribute to vision,
taste, olfaction, hearing, touch, and thermo- and osmo-
sensation, making cells able to sense and respond to envi-
ronmental changes.

TRP channels consist of six transmembrane domains (S1–
S6) with both the amino (NH2) and carboxylic acid (COOH)
termini localized to the cytosol. The COOH region is highly
conserved among TRPs, whereas the NH2 region usually con-
tains different ankyrin repeats, which consist of 33-residue
motifs with a conserved backbone and variable residues that
mediate specific protein–protein interactions (Sedgwick and
Smerdon, 1999). The S1–S6 domains assemble as homo- or
hetero-tetramers, with the pore domain formed by loops
between S5 and S6, which permit a non-selective influx of
cations. Although TRPs are described as non-selective Ca2+-
permeable cation channels, their Ca2+/Na+ permeability ratio
may vary markedly between different members of the super-
family and also among members of each subfamily (Nilius
et al., 2007).

TRP channel gating may depend on direct activation of
the channels by a plethora of physicochemical stimuli,

Table 1
Agents which trigger or inhibit migraine and cluster headache and act on TRP channels

Target
Agent (environmental,
herbal, food, drug) Active compound

Effect on primary
headache Action on TRP channel

TRPA1 Cigarette smoke Crotonaldehyde acrolein
formaldehyde nicotine

Acetaldehyde

Migraine and cluster
headache trigger (Rozen,
2010; Lima et al., 2011)

Agonist (Bang et al., 2007a;
McNamara et al., 2007;
Andre et al., 2008; Talavera
et al., 2009)

Tear gas O-chlorobenzylidene
malononitrile

Headache trigger (Anderson
et al., 1996)

Agonist (Brone et al., 2008)

Formalin Formalin Migraine trigger (Wantke
et al., 2000)

Agonist (McNamara et al.,
2007)

Umbellularia californica Umbellulone Migraine trigger (Immel,
2006)

Agonist (Nassini et al., 2012a)

Tanacetum parthenium
(feverfew)

Parthenolide Migraine preemptive
Migraine abortive (Diener
et al., 2005; Cady et al.,
2011)

Desensitizing agonist
(Materazzi et al., 2013)

Angelica sinensis Ligustilide Migraine preemptive Desensitizing agonist (Zhong
et al., 2011)

Paracetamol NAPQI Migraine abortive Desensitizing agonist
(Andersson et al., 2011)

Glyceryl trinitrate NO Migraine trigger (Iversen,
1995)

Agonist (Miyamoto et al.,
2009)

Ammonium chloride Ammonium chloride Cluster headache trigger
(Irlbacher and Meyer,
2002)

Agonist (Fujita et al., 2008)

TRPV1 Alcoholic beverages Ethanol Migraine trigger (Kelman,
2007)

Agonist (Trevizani et al.,
2002; Nicoletti et al., 2008)

Capsicum Capsaicin Migraine and cluster
headache preemptive
(Sicuteri et al., 1989; Fusco
et al., 1994; 2003)

Desensitizing agonist (Szallasi
and Blumberg, 1999;
O’Neill et al., 2012)

Multiple TRP Tiger balm Camphor Tension type headache
abortive (Schattner and
Randerson, 1996)

TRPV3 agonist (Moqrich
et al., 2005)

TRPA1 antagonist (Sawada
et al., 2008)

TRPV1 desensitizing agonist
(Xu et al., 2005)
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including compounds of exogenous origin or endogenous
signalling molecules (Nilius et al., 2007). TRP gating may also
result from changes in the intracellular machinery as in the
case of stimulation of the different isoforms of phospholipase
C (PLC; Hardie and Minke, 1992; Niemeyer et al., 1996),
following activation of GPCRs or tyrosine kinase receptors
(Spehr et al., 2011). For instance, it has been hypothesized
that PLC can modulate TRP channel activity through the
hydrolysis of phosphatidylinositol (4,5) bisphosphate (PIP2),
which leads to Ca2+ liberation from intracellular stores
(Ramsey et al., 2006). Peculiar features of activation have
been reported for certain TRP channels. These features may
be exploited for a better understanding of how cells sense
their surrounding environment, and may also represent the
way to identify novel therapeutic targets.

In mammals, the TRP family consists of 28 proteins
grouped into six subfamilies according to sequence identity
and designated as TRP canonical (TRPC), TRP vanilloid
(TRPV), TRP melastatin (TRPM), TRP polycystin (TRPP), TRP
mucolipin (TRPML) and TRPA1 channels (Montell et al.,
2002; Clapham, 2003). The mammalian TRPC subfamily
comprises seven members (TRPC1–7), whose activation
depends on the stimulation of GPCR and receptor tyrosine
kinases (Montell, 1999), although TRPC1 channels seem to be
directly activated by membrane stretch (Maroto et al., 2005).
The TRPM comprises eight different members (TRPM1–8),
which differently from TRPC and TRPV, do not contain
ankyrin repeats within their NH2-terminal domain. Menthol
and moderately low temperatures (<25°C) activate the TRPM8
channel. Both TRPP and TRPML families have been less
extensively characterized. The TRPML family consists of
three mammalian members (TRPML1–3). TRPML1 is widely
expressed and appears to reside in late endosomes/lysosomes
where it seems to act as a H+-sensitive channel to prevent
overacidification (Soyombo et al., 2006). The heterogeneous
TRPP family, consisting of three members according to struc-
ture, can be divided into PKD1-like (TRPP1-like) and PKD2-
like (TRPP2-like) proteins (Hanaoka et al., 2000).

ThermoTRP channels in sensory neurons
Some TRP channels are abundantly expressed by the subsets
of primary sensory neurons, which express neuropeptides.
These include four of the six members of the TRPV subfamily,
TRPV1, TRPV2, TRPV3 and TRPV4, characterized by their
ability to sense warm–hot temperatures. TRPV channels also
function as chemosensors for a number of naturally occur-
ring (both exogenous and endogenous) and synthetic
ligands. TRPV1, first identified as the receptor of the vanilloid
compound, capsaicin, is responsive to high proton concen-
tration (pH 6–5; Bevan and Geppetti, 1994; Tominaga et al.,
1998), anandamide (Zygmunt et al., 1999) and a series of lipid
derivatives (Ho et al., 2008c). Non-selective activators of
TRPV3 and TRPV4 channels are camphor and hypotonic
solutions respectively (Nilius et al., 2013). Synthetic agonists,
such as the phorbol ester derivative 4α-phorbol 12,13-
didecanoate (4α-PDD), low pH, citrate, endocannabinoids,
arachidonic acid metabolites and NO may also activate
TRPV3 channels (Watanabe et al., 2003; Vriens et al., 2005).
Although the uricosuric agent probenecid has been identified
as a selective stimulant of TRPV2 (Bang et al., 2007b), less

information is available regarding the activators of TRPV2
channels. The TRPM8 channel is expressed in somatosensory
neurons, but apparently not in those, which release
tachykinins/CGRP (Bhattacharya et al., 2008). Finally, there is
also evidence that TRPM3 channels, rather uniquely respon-
sive to pregnenolone sulfate, seem to be localized to a sub-
population of primary sensory neurons (Wagner et al., 2008).

A large NH2-terminal with 17 predicted ankyrin repeat
domains is the typical feature of the TRPA1 channel, the sole
member of the TRPA subfamily. TRPA1 channels, first cloned
from human foetal lung fibroblasts, are abundantly expressed
in peptidergic nociceptors (Story et al., 2003; Bhattacharya
et al., 2008), but these channels are also found in many non-
neural cell types and tissues, including hair cells, pancreas,
heart, brain, keratinocytes (Atoyan et al., 2009), urinary
bladder (Streng et al., 2008), prostate gland (Gratzke et al.,
2010), endothelium (Earley et al., 2009). and other vascular
and perivascular cells (Earley, 2012), enterochromaffin cells
(Nozawa et al., 2009), gastrointestinal tract (Izzo et al., 2012),
odontoblasts (El Karim et al., 2010), dental pulp (El Karim
et al., 2011), synovial fibroblasts (Kochukov et al., 2006), and
epithelial and smooth muscle cells of the airways and lung
(Nassini et al., 2012b). It has been extensively demonstrated
that TRPA1 channels play a key role in the detection of
pungent or irritant principles, including compounds con-
tained in various spicy foods, such as allyl isothiocyanate
(mustard oil) contained in horseradish (Jordt et al., 2004),
allicin and diallyldisulfide contained in garlic (Bautista et al.,
2005), cinnamaldehyde contained in cinnamon (Bandell
et al., 2004), and capsiate (Shintaku et al., 2012). Additional
spices or food ingredients that may activate TRPA1 channels
are gingerol (in ginger), eugenol (in cloves), methyl salicylate
(in wintergreen), carvacrol (in oregano), and thymol (in
thyme and oregano; Bandell et al., 2004; Xu et al., 2006; Lee
et al., 2008). Environmental irritants and industry pollutants,
such as acetaldehyde, formaldehyde, hydrogen peroxide,
hypochlorite, isocyanates, ozone, carbon dioxide, ultraviolet
light and acrolein, a highly reactive α,β-unsatured aldehyde
present in tear gas, cigarette smoke, smoke from burning
vegetation and vehicle exhaust, and hydrogen sulfide (H2S)
also activate TRPA1 channels (Bautista et al., 2006; Bang et al.,
2007a; McNamara et al., 2007; Andersson et al., 2008; Bessac
et al., 2008; 2009; Sawada et al., 2008; Hill and Schaefer, 2009;
Taylor-Clark and Undem, 2010; Wang et al., 2010; Miyamoto
et al., 2011). Recently, it has been reported the ability of
cannabichromene, a non-psychotropic Cannabis-derived can-
nabinoid with anti-inflammatory (Romano et al., 2013) and
analgesic properties (Maione et al., 2011) to activate TRPA1
channels (De Petrocellis et al., 2011). It has also been pro-
posed that these channels function as a detector of mechani-
cal stimuli and noxious cold (<17°C; Story et al., 2003),
although these proposals remain controversial (Jordt et al.,
2004; Latorre, 2009). TRPV1, TRPV2, TRPV3, TRPV4, TRPA1
and TRPM8 have been collectively labelled as thermoTRP
channels because they can be activated by a large range of
temperatures from noxious cold to noxious heat (Vay et al.,
2012).

Members of the TRP family expressed in sensory neurons
are primarily involved in the detection of noxious physical
(thermal and mechanical) and chemical stimuli. Among the
6–7 TRPs expressed by nociceptors, recent pathophysiological
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and pharmacological findings have pointed to TRPV1 and
TRPA1 channels as main contributors in models of inflam-
matory and neuropathic pain (Fernandes et al., 2012). It
should be underlined that TRPV1 and TRPA1 channels
co-localize in a subpopulation of non-myelinated or thinly
myelinated C- or Aδ-fibre neurons of the DRG, TG and VG.
The population of TRPV1-positive neurons seems to be larger
than the TRPA1-positive subpopulation (Story et al., 2003;
Bhattacharya et al., 2008). Both TRPV1 and TRPA1 channels
coexist within neuropeptides (SP, NKA and CGRP) in the
same nociceptive neurons. While TRPA1 expression seems to
be confined to the peptidergic neuronal subpopulation,
TRPV1-positive neurons appear to be also non-peptidergic
(Story et al., 2003; Bhattacharya et al., 2008). However, more
recent studies have identified subpopulations of DRG
neurons that co-stain for IB4 (isolectin B4, a marker of non-
peptidergic neurons) or the purinergic P2X3 receptor (also
expressed by non-peptidergic neurons) and TRPA1 channels
(Kim et al., 2010; Barabas et al., 2012).

Mutation of TRP channels has been linked to various
diseases affecting different organs or systems. However, only
a small number of TRP channelopathies, also known as ‘TRP-
pathies’, has been definitively identified so far. TRPpathies
encompass neurological disorders, including scapuloperoneal
hereditary motor neuropathy and Charcot–Marie–Tooth
disease type-2C, due to TRPV4 mutation or Guamanian
amyotrophic lateral sclerosis/parkinsonism dementia
complex, due to TRPM2 or TRPM7 mutation, renal diseases,
including focal segmental glomerulosclerosis, due to TRPC6
mutation or autosomal dominant polycystic kidney disease,
due to TRPP2 mutation, and complex skeletal dysplasias,
including brachyolmia type 3, spondylometaphyseal dyspla-
sia, Kozlowski type and autosomal dominant metatropic dys-
plasia due to TRPV4 mutation, among others (Nilius and
Owsianik, 2010). Of interest for the present discussion,
recently, a familial episodic pain syndrome has been attrib-
uted to a gain of function mutation of TRPA1 channels
(Kremeyer et al., 2010).

TRPA1 channels, oxidative stress
and nitrative stress in pain
and inflammation

In aerobic organisms, the balance between oxidation and
reduction (redox state) is of paramount importance for physi-
ological homeostasis. The conservation of an optimal redox
state is pursued through diverse mechanisms also involving
the transformation in reactive oxygen species (ROS), includ-
ing O2–, OH−, H2O2 and O3, which affect cellular functions
deeply, but can also lead to irreversible damage, up to cell
death. Oxidative stress has been claimed as a mechanism for
a number of diseases, including inflammatory pain, neuro-
pathic pain and migraine. An unprecedented series of find-
ings has shown that TRPA1 channels are activated by ROS,
reactive nitrogen species (RNS) and other electrophiles, thus
identifying the channel as a sensor of oxidative and nitrative
stress generated at sites of inflammation or tissue injury.
Indeed, Ca2+ influx and activation of membrane currents in
sensory neurons induced by ROS, RNS or RCS (reactive car-

bonyl species) are absent in TRPA1−/− mice and are blocked by
TRPA1 channel antagonists (Bautista et al., 2006; Trevisani
et al., 2007; Bessac et al., 2008; Taylor-Clark and Undem,
2010). Activation by hyperoxia (86% O2) suggests that TRPA1
channels function as sensors, exclusively for abnormal redox
states (Takahashi et al., 2011). α,β-Unsaturated aldehydes
produced by membrane phospholipid peroxidation by ROS,
such as acrolein (Bautista et al., 2006), 4-hydroxynonenal
(Trevisani et al., 2007) or oxononenal (Taylor-Clark et al.,
2008), or other by-products of oxidative stress, such as hydro-
gen peroxide (Bessac et al., 2008), hypochlorite (Bessac et al.,
2008), or nitrative stress by-products, such as nitroleic acid or
NO (Taylor-Clark et al., 2009) and other reactive molecules,
all share the ability to activate TRPA1 because of their reactive
properties, which result in the carbonylation, nitrosilation or
oxidation of specific cysteine (C619, C639, C663, C415, C422
and C622) or lysine (K708) residues (Hinman et al., 2006;
Macpherson et al., 2007).

Oxidative/nitrative stress and the ensuing TRPA1 activa-
tion result from endogenous processes driven by inflamma-
tory or degenerative conditions, but may also derive from
exogenous stimuli, which per se are already suited for TRPA1
channel stimulation. Thus, crotonaldehyde, acrolein (Andre
et al., 2008), acetaldehyde (Bang et al., 2007a) and possibly
other reactive molecules and nicotine (Talavera et al., 2009),
all contained in cigarette smoke, gate the TRPA1 channels
on airway sensory nerve terminals to release tachykinins
and CGRP, which in turn mediate the early inflammatory
response that follows acute exposure to cigarette smoke
(Andre et al., 2008). Certain volatile anaesthetics, including
the irritants isoflurane and desflurane, during induction and
emergence from anaesthesia cause a strong cough reflex that
can precipitate laryngospasm, a potentially life-threatening
complication. Their ability to gate TRPA1 channels, thus pro-
ducing sensory nerve activation and neurogenic inflamma-
tion responses, may be the underlying mechanism for such
an adverse reaction (Matta et al., 2008; Eilers et al., 2010).
Chemotherapeutic agents are known to produce remarkable
oxidative stress, which is likely to contribute to their antican-
cer activity, even if this issue remains highly debated
(Saeidnia and Abdollahi, 2013).

However, oxidative stress seems to be responsible for
serious adverse events, including chemotherapeutic-induced
peripheral neuropathy (CIPN), which characterized by par-
aesthesias, spontaneous pain, and typically by prolonged
mechanical and cold hypersensitivity, reduces quality of life,
and often causes hospitalization and therapy discontinuation
(Cavaletti and Marmiroli, 2010). We recently found in a
mouse model of CIPN that oxaliplatin, paclitaxel or bort-
ezomib (Nassini et al., 2011; Materazzi et al., 2012; Trevisan
et al., 2013) produce a prolonged condition of mechanical
and cold hypersensitivity that lasts for 11–15 days. When
established, the hypersensitivity is completely, although tran-
siently, reverted by a ROS scavenger (α-lipoic acid) or a TRPA1
channel antagonist (HC-030031). However, in TRPA1-deleted
mice, or if the ROS scavenger or the TRPA1 antagonist was
given just before and for 6 h after bortezomib or oxaliplatin
administration, the mice were completely and permanently
protected from the development of the hypersensitivity
(Trevisan et al., 2013). Because a marker of oxidative stress
was transiently increased in mouse plasma within the first
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few hours after anticancer drug administration, the hypoth-
esis was advanced that sensitization of TRPA1 channels by
oxidative stress is required to establish and maintain the
prolonged hypersensitivity by chemotherapeutic agents
(Trevisan et al., 2013). These channels also contribute to
mechanical hyperalgesia in models of inflammatory pain,
such as those induced by carrageenan (Moilanen et al., 2012),
complete Freund’s adjuvant (da Costa et al., 2010), and in a
caerulein-induced model of pancreatitis (Schwartz et al.,
2013). However, in these cases, the association of TRPA1
channel activation/sensitization and oxidative stress has not
been investigated.

TRPA1 channels in pain and migraine

Anecdotal reports and epidemiological findings indicate that
a large series of endogenous or exogenous agents trigger
headache in migraineurs (Courteau et al., 1994; Kelman,
2007; Lima et al., 2011). In the context of this review, it is
important to emphasize that, among the highly heterogene-
ous series of triggering factors, certain foods or exposure
to environmental agents provoke migraine headaches
(Courteau et al., 1994; Kelman, 2007; Lima et al., 2011). In
terms of foods, 40–50% of migraineurs are sensitive to
alcohol or chocolate (Kelman, 2007). Regarding environmen-
tal agents, there is evidence suggesting that migraine and
cluster headache are favoured in susceptible individuals by
increased concentration of air pollutants, as indicated by a
greater number of emergency room visits for headache under
such circumstances (Szyszkowicz, 2008). Furthermore, expo-
sure to tear gas induces a series of toxic effects such as cough,
chest pain, dyspnoea and headache (Anderson et al., 1996).
Cigarette smoke inhalation affects headache occurrence in
migraineurs (Lima et al., 2011) and prolonged or repeated
exposure to cigarette smoke may increase cluster headache
frequency (Rozen, 2010). However, a mechanistic explana-
tion for the ability of this apparently unrelated series of
substances to trigger migraine headaches is still missing.

The α,β-unsaturated aldehyde, acrolein, contained in
cigarette smoke (Bautista et al., 2006), is produced endog-
enously by plasma membrane peroxidation by oxidative
stress. Acrolein, when acting on sensory nerve endings,
causes neurogenic inflammation, by a mechanism dependent
on capsaicin-sensitive peptidergic primary afferent fibres, via
activation of TRPA1 channels (Bautista et al., 2006; Geppetti
et al., 2008). Accordingly, compounds contained in cigarette
smoke, including acrolein and crotonaldehyde, produce
airway inflammatory responses through stimulation of
TRPA1 channels expressed by vagal sensory nerve endings
(Andre et al., 2008). Interestingly, acrolein, when applied to
the nasal mucosa of rats, enhances the meningeal blood flow
by a mechanism dependent on TRPA1 channel activation and
the subsequent release of CGRP (Kunkler et al., 2011). Thus, it
could be hypothesized that acrolein, because of its ability to
activate these channels and thereby produce CGRP release,
mediates neurogenic inflammation and headache induced by
toxic environmental irritants, including cigarette smoke
inhalation (Geppetti et al., 2008; Kunkler et al., 2011). The
same mechanism could also be hypothesized for tear gases,

in particular for 2-chlorobenzalmalononitrile (CS tear gas),
which has shown to be able to induce headache (Anderson
et al., 1996), and with similar constituents of tear gases, is one
of the most potent and specific TRPA1 channel agonists char-
acterized so far (Brone et al., 2008). Although the effect of H2S
has not often been reported, intoxication with H2S has been
described to trigger headache attacks (Hirsch and Zavala,
1999). Underestimation of the phenomenon may be due to
the fact that the intoxication is frequently associated with
loss of consciousness of the intoxicated subjects. The discov-
ery that H2S stimulates TRPA1 channels (Miyamoto et al.,
2011; Okubo et al., 2012) and that this activation results in
CGRP release (Pozsgai et al., 2012; White et al., 2013) suggests
a mechanistic pathway for H2S-induced headache.

Knowledge and use of herbal medicines, as often happens
in biomedical investigation, may help to elucidate mecha-
nisms of disease, to validate therapeutic targets, and eventu-
ally to direct pharmaceutical development. The California
bay laurel, Umbellularia californica, is also known as the ‘head-
ache tree’ because of the ability of its scent to cause headache
attacks (Immel, 2006). Recent evidence showed that exposure
to the scent of Umbellularia californica triggers cluster head-
ache attacks (Benemei et al., 2010). Umbellulone, is a major
volatile component of Umbellularia californica, with a specific
chemical feature, resembling those necessary for TRPA1
agonism. Although umbellulone possesses a β,β-dialkyl sub-
stitution, which should inhibit reaction with thiol groups
(LoPachin et al., 2008), it rather surprisingly reacts in a ‘click-
fashion’ with the biogenic thiol cysteamine, producing a
Michael adduct (Nassini et al., 2012a). As the closely related,
but not irritant, terpenoid enones, (+)-verbenone and (+)-
piperitone, do not produce such a chemical reaction, Michael
acceptor behaviour seems to be required for the sensory
noxious activity of umbellulone. Umbellulone, most likely
through this chemical property, caused TRPA1-dependent
CGRP release in vitro and nociceptive behaviour in vivo in rats
and mice. Finally, and more importantly, when applied intra-
nasally (likewise in the acrolein experiments), umbellulone
evoked TRPA1-mediated and CGRP-dependent neurogenic
meningeal vasodilation (Nassini et al., 2012a). Although a
reflex pathway, originating in the nasal cavity, and resulting
in CGRP-dependent meningeal vasodilatation, has been pro-
posed to explain the vascular action of acrolein and umbel-
lulone (Kunkler et al., 2011; Nassini et al., 2012a), the precise
mechanism involved in such a response remains to be eluci-
dated. There is evidence that TRPA1 channels are expressed
by endothelial cells of rat cerebral and cerebellar pial arteries
(but not in endothelium of other vascular beds), where they
mediate endothelium-dependent vasodilation (Earley et al.,
2009). However, a contribution of such CGRP-independent
mechanism for umbellulone- and acrolein-evoked vasodila-
tion is unlikely, as the response in meningeal arteries by the
two TRPA1 channel agonists was completely abolished by
CGRP receptor antagonism (Kunkler et al., 2011; Nassini
et al., 2012a).

A series of substances, now identified as TRPA1 channel
agonists, has been reported in the past to cause migraine or
non-migraine headaches after inhalation by migraine
patients or non-migraine individuals respectively (Courteau
et al., 1994; Kelman, 2007; Lima et al., 2011). Ammonium
chloride is an agonist for these channels (Bessac and Jordt,

BJP S Benemei et al.

2558 British Journal of Pharmacology (2014) 171 2552–2567



2010) and its inhalation has been reported to trigger cluster-
like headache attacks (Irlbacher and Meyer, 2002). Similarly,
formalin has long been known as a headache-producing
agent (Wantke et al., 2000), and it has recently been recog-
nized as a TRPA1 agonist (McNamara et al., 2007).

The contribution of herbal medicines to the understand-
ing of the role of TRPA1 channels in headache mechanism
is not limited to the irritant substance, umbellulone. Very
recently, it has been demonstrated that parthenolide, a bio-
active compound contained in the antimigraine preparations
from Tanacetum parthenium (also known as feverfew), acts as
a partial agonist at TRPA1 channels (Materazzi et al., 2013). In
addition, parthenolide, after an initial and moderate activa-
tion, produces a profound and persistent desensitization of
these channels and a complete defunctionalization of sensory
neurons (including meningeal trigeminal nerve terminals),
which are rendered unable to release CGRP upon exposure to
any stimulus (Materazzi et al., 2013). These findings suggest
that the antimigraine action of preparations of feverfew,
either used as a pre-emptive treatment (Diener et al., 2005) or
as an acute medication (Cady et al., 2011), may be due to the
ability of parthenolide to deactivate the trigeminovascular-
CGRP system. The desensitizing action of parthenolide does
not seem unique to this molecule, as ligustilide (Zhong et al.,
2011), has recently been identified as a TRPA1 channel
agonist, which may induce TRPA1 and sensory neuron desen-
sitization. Ligustilide, contained in elevated concentrations
in herbal remedies, is used in Chinese and North American
traditional medicine to treat pain and headaches (Li et al.,
2011).

Some medicines may also provoke migraine. Nitroglycer-
ine, a NO donor with a direct vasodilator action on vascular
smooth muscle, has been known for a long time as a proto-
typical headache-causing agent (Thomsen and Olesen, 2001)
and as a valuable experimental tool to provoke migraine-like
attacks (Iversen, 1995). One possible explanation for the pro-
migraine action of nitroglycerine is based on the ability of
NO to produce vasodilatation of cranial arteries (Shevel,
2011). This view is supported by pharmacological evidence
that nitroglycerine-induced migraine-like headaches are
reversed by sumatriptan (Iversen and Olesen, 1993; 1996),
presumably by its direct vasoconstrictor action (Asghar et al.,
2011; Amin et al., 2013), but not by a CGRP receptor antago-
nist (Tvedskov et al., 2010). NO may also release CGRP in vitro
(Wei et al., 1992) and in vivo (Fanciullacci et al., 1995), even if
this effect of NO has not always been confirmed (Eltorp et al.,
2000). Although NO stimulates sensory neurons by activating
TRPA1 channels (Miyamoto et al., 2009), it is not known
whether NO releases CGRP from trigeminal neurons via
TRPA1 stimulation. It should be, however, underlined that
vasodilation in vivo (Iversen, 1995) and CGRP release in vitro
(Wei et al., 1992) are very early phenomena, which occur
within a few minutes after drug exposure. In contrast, clinical
investigation with nitroglycerine has revealed a stereotyped
and delayed time-course of the migraine-like pain that
develop only 4–5 h after (Iversen, 1995) drug administration.
Thus, a temporal mismatch exists between vasodilation/acute
CGRP release and the occurrence of the migraine headache
evoked by NO. This represents a major reason for criticism
of the hypothesis that these early neurovascular actions
are responsible for the pro-migraine action of the drug.

Changes in neuronal sensitivity, driven by the exposure to
nitroglycerine/NO, which requires 4–5 h to fully exhibit their
pro-migraine potential, are more likely to be responsible for
the phenomenon. However, the possible role of TRPA1 in this
key process has not yet been explored.

Finally, TRPA1 channel research has provided new
insights in the analgesic activity of an old medicine.
The paracetamol (acetaminophen) metabolite, N-acetyl-p-
benzoquinone imine (NAPQI), activated the TRPA1 channel
and thereby evoked a moderate and reversible neurogenic
inflammatory response, which may have contributed to
airway inflammation (Nassini et al., 2010) and thus could
favour asthma in susceptible individuals (Beasley et al., 2008).
These initial results were followed by further data, relevant to
understanding the hitherto unexplained analgesic action of
paracetamol. NAPQI potentially generated by autochthone
cytochrome activity within the spinal cord desensitized
TRPA1 channels, which induced channel-dependent, anti-
nociceptive actions (Andersson et al., 2011). However, it is
not known whether this novel spinal mechanism mediated
by inhibition of TRPA1 channels, possibly relevant for the
general analgesic actions of paracetamol, could be of interest
for the antimigraine activity of the drug.

Other TRPs in migraine and
sensitization processes

TRPV1, probably because of the long-standing use of capsai-
cin as a pain remedy, was the first TRP channel studied in
migraine. TRPV1 is a multifunctional channel involved in
thermo- (heat) and chemo-sensation, functioning as a recep-
tor for a number of seemingly unrelated noxious stimuli. The
unique pharmacological property of capsaicin is based on an
initial transient TRPV1 activation, associated in vivo to an
irritating and painful sensation, which is quite rapidly fol-
lowed by a durable refractory state in which nociceptors do
not respond to subsequent challenges with capsaicin or any
other irritant/painful stimulus. The marked desensitization
produced by capsaicin accounts for the widespread use of
capsaicin skin creams, ointments, patches and other prepa-
rations for the treatment of localized neuropathic pain
(Backonja et al., 2008). A similar desensitizing property that
follows site-specific injections of the capsaicin analogue and
ultrapotent TRPV1 channel agonist, resiniferatoxin (Szallasi
and Blumberg, 1993), has been successfully used in bladder
disorders (Lazzeri et al., 2000; 2004; Peng and Kuo, 2007), and
is being evaluated as a long-lasting analgesic treatment in
cancer patients with refractory chronic pain (NCT00804154).
Based on the assumption that this procedure, which targets
the capsaicin ‘receptor’ could block meningeal afferents of
the first branch of the trigeminal nerve, topical capsaicin
application has been applied to the nasal mucosa to prevent
cluster headache (Sicuteri et al., 1989) or migraine (Saper
et al., 2002; Fusco et al., 2003) attacks. Despite the fact that
results of clinical studies with intranasally delivered formu-
lations of both capsaicin and capsaicin analogues (e.g. civa-
mide) have often been compromised by methodological
limits and small sample size (Saper et al., 2002; Fusco et al.,
2003), a recent review on the treatment of cluster headache
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proposed a level B recommendation for intranasal civamide
for prophylactic purposes (Francis et al., 2010).

TRPV1 channels under certain circumstances could also
play a pathophysiological role in migraine. Alcoholic bever-
ages are reported to induce migraine in about 40% of the
patients (Kelman, 2007), but the reason for such susceptibil-
ity is unknown. Ethanol acts as a TRPV1 channel stimulant,
probably because it reduces the threshold temperature for
channel activation by 8°C, from 42/43 to 35°C, which is
below the normal body temperature (Trevisani et al., 2002).
In addition, and importantly for migraine pathophysiology,
ethanol, by targeting TRPV1 channels, evokes CGRP release
and the consequent vasodilation in meningeal vessels
(Nicoletti et al., 2008). The ability of ethanol to sensitize
TRPV1 channels is not limited to temperature, as TRPV1-
mediated responses to anandamide and protons are also
exaggerated by about 10- and 50-fold respectively (Trevisani
et al., 2002). Thus, it may be hypothesized that the ability of
alcoholic beverages to trigger migraine depends on individual
susceptibility as well as the presence of co-factors, which
potentiate ethanol or temperature-gating actions on TRPV1
channels.

The TRPV4 channel is activated by hypoosmolar solutions
and membrane stretching and is expressed in peptidergic
sensory neurons (Vergnolle et al., 2010). This feature could be
of interest in migraine, the pain of which is often described as
throbbing. It has also been reported that pregnenolone
sulfate is a TRPM3 channel agonist in DRG neurons (Vriens
et al., 2011). This finding seems of particular interest, as men-
strual cycle, pregnancy and menopause are major determi-
nants of the frequency and severity of migraine attacks. It

also suggests a possible direct mechanism that may explain
the strong association between female sex hormones and
sensory neuron activation in migraine. However, no studies
have yet addressed the role of either TRPV4 or TRPM3 chan-
nels in migraine or associated headaches.

Chronic migraine and medication overuse headache
(MOH, chronic headache accompanied by overuse of
symptomatic medicines) are conditions underlined by a
progressively worsening hypersensitivity to a host of usually
innocuous stimuli. Thus, allodynia represents a characteris-
tic of chronic migraine and MOH (Schurks and Diener,
2008; De Felice et al., 2011). Hypersensitivity may also
develop during each individual attack, where sensitization
of trigeminal neurons is considered a first step, responsible
for the perception of headache throbbing pain (Strassman
and Levy, 2006), of a more complex process, which, involv-
ing second-order neurons, contributes to cephalic allodynia
and muscle tenderness (Burstein et al., 2000; 2010). Hyper-
production of endogenous inflammatory mediators may
take part in the initial phenomenon, whereas a central
mechanism may activate and sensitize thalamic trigemino-
vascular neurons (Noseda and Burstein, 2013). A number
of neurotransmitters and neural circuitries may contribute
to aggravate sensitization in each individual attack, or
promote the transition of migraine from an episodic to a
chronic condition. There is abundant evidence that TRP
channels are sensitized following exposure to proinflamma-
tory mediators, and by intracellular pathways (Trevisani
et al., 2002; Nilius et al., 2007; Nilius and Owsianik, 2010;
Selescu et al., 2013; Trevisan et al., 2013). However, specific
information on the role of TRP channels, and in particular
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Figure 1
Schematic representation of the activity of several agents (drugs, herbal medicines, endogenous and exogenous compounds), which, by targeting
the TRPA1 channel, may positively or negatively affect the migraine attack via the release of CGRP and SP from peripheral and central endings of
trigeminal neurons. (A) Some agents may behave as partial agonists or after an initial activation may lead to a profound and enduring channel
desensitization. Both mechanisms by inhibiting CGRP release may eventually ameliorate migraine and cluster headache attacks. (B) In contrast,
agonists of the TRPA1, by channel stimulation and the ensuing release of neuropeptide, may trigger migraine and cluster headache attacks.
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TRPV1 and TRPA1, in the sensitization of trigeminal affer-
ents and/or central nociceptive neurons, has not yet been
addressed.

Conclusions

Genetic investigation has provided little help to identify the
pathophysiological features that determine migraine suscep-
tibility. Similarly, neuroimaging or biomolecular studies have
not yet disclosed the underlying anatomical and neuro-
chemical pathways that result in the migraine attack. In con-
trast, pharmacological studies and clinical trials have made
fundamental contributions to establishing some key players
in migraine headache. The ability of non-steroidal anti-
inflammatory drugs (NSAIDs) to treat migraine indicates that
prostanoids have a role in the disease. However, their action
is far from specific, as NSAIDs are used in practically all types
of pain. Triptans are of paramount importance in the acute
relief of migraine attack. However, as they are receptor ago-
nists (do not block any endogenous agent), and because of
their multiple pharmacological actions (vasoconstrictors,
inhibitors of CGRP release from perivascular sensory nerve
terminals, inhibitors of neuronal transmission within central
brain areas), they are not better suited to elucidate the under-
lying mechanisms of migraine. In contrast, the ability of
CGRP receptor antagonists to abolish the pain and associated
symptoms of migraine attack, coupled to the lack of evidence
that CGRP plays any major role in other types of pain,
strongly and specifically implicates CGRP in migraine. Thus,
knowledge of the mechanisms that directly cause, or regulate,
after a process of sensitization or desensitization, CGRP
release from nerves is of paramount importance for our
understanding of migraine pathophysiology. TRP channels
expressed in peptidergic nociceptors are among the molecu-
lar entities that encompass all the features required for this
type of investigation. TRPA1 channels, which are activated or
sensitized by some known triggers of migraine, along with a
wide variety of other stimuli, and are inhibited by analgesic
and antimigraine medicines (see Figure 1), would represent a
major target for novel drugs to treat migraine and the asso-
ciated primary headaches.
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